Mittlere Schwingungsamplituden von XeOF₅

Kurze Mitteilung

Enrique J. Baran

Area de Química Inorgánica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentinien

(Eingegangen 17. März 1982, Angenommen 31, März 1982)

Mean Amplitudes of Vibration of XeOF₅ (Short Communication)

Mean amplitudes of vibration for the $XeOF_5^-$ anion have been calculated from known *Raman* data in a wide temperature range. The results are briefly discussed and some comparisons with other ZXY_5 species, as well as with related xenon compounds are made.

(Keywords: Bond properties; Mean amplitudes of vibration; Molecular geometry)

Vor einiger Zeit haben Bartell und Mitarb. durch Elektronenbeugungs- und Mikrowellen-Messungen gezeigt, daß die Molekülgeometrie von ${\rm IOF_5^{1}}$ und ${\rm SF_5Cl^2}$ nicht mit den Erwartungen der gut bekannten und bewährten $Gillespie-Nyholm-{\rm VSEPR-Theorie^{3,4}}$ übereinstimmt. In beiden Fällen wurde nämlich — entgegen den Erwartungen gefunden — daß die axiale X—F-Bindung etwas länger als die vier äquatorialen ist.

Ubereinstimmend mit diesen experimentellen Ergebnissen konnten wir an Hand von Berechnungen der mittleren Schwingungsamplituden beweisen, daß eine größere Reihe von ZXF_5 -Verbindungen ein solches Verhalten aufweist (vgl. 5,6 und die dort angegebene Literatur).

In Fortsetzung dieser Arbeiten haben wir jetzt auch für das $\rm XeOF_{\overline{5}}$ -Anion ähnliche Berechnungen durchgeführt, um zu sehen, ob auch diese interessante Spezies ein ähnliches Verhalten zeigt.

Obwohl die Struktur von $XeOF_5$ sicherlich von der pseudooktaedrischen C_{4v} -Symmetrie abweicht, läßt sich das Raman-Spektrum ziemlich eindeutig nach dieser Symmetrie interpretieren⁷.

Zur Berechnung der mittleren Schwingungsamplituden wurde genau wie bei den früher untersuchten Verbindungen die "Methode der charakteristischen Schwingungen"⁸⁻¹⁰ herangezogen. Die dazu erforderlichen Schwingungsfrequenzen wurden der Arbeit von Schrobilgen und Mitarb.⁷ entnommen und dazu die folgenden Strukturparameter benutzt, welche durch Vergleich mit verwandten Verbindungen — IOF_5^1 und verschiedenen Xenon Oxofluoriden¹¹ — erhalten wurden: $d(Xe-O) = 1,72 \,\text{Å}, \, d(Xe-F_{ax}) = d(Xe-F_{aq}) = 1,85 \,\text{Å}$ und alle Winkel gleich 90° .

Tabelle 1. Mittlere Schwingungsamplituden (in Å) für $XeOF_5$ bei verschiedenen Temperaturen

<i>T</i> (K)	$u_{ m Xe-O}$	$u_{\mathrm{Xe-F(eq)}}$	uXe—F(ax)	$u_{\mathrm{F(eq)F(eq)}}$	$u_{\mathrm{F(eq)F(ax)}}$	$u_{\mathrm{F(eq)O}}$
0	0.0366	0.0454	0.0492	0.068	0.065	0.065
100	0,0366	0.0454	0.0492 0.0493	0.069	0.065	0,065
200	0,0366	0,0468	0,0516	$0,\!074$	0,068	0,068
298	0,0371	0,0499	0,0561	0,082	0.074	0,074
300	0,0371	0,0499	0,0562	0,082	0,074	0,074
400	0,0381	0,0540	0,0615	0,091	0,081	0,081
0,0396	0,0582	0,0669	0,099	0,088	0,088	500
600	0,0413	0,0625	0,0721	0,108	0,095	0,095
700	0,0431	0,0666	0,0771	0,116	0,102	0,101
800	0,0450	0,0705	0,0819	0,123	0,108	0,107
900	0,0470	0,0743	0.0864	0,130	0,114	0,113
1000	0,0490	0,0780	0,0908	0,137	0,120	0,119

Die Ergebnisse der Berechnung im Temperaturbereich zwischen 0 und $1\,000\,\mathrm{K}$ sind in Tabelle 1 zusammengestellt. Eine Analyse der angegebenen Werte erlaubt folgende Beobachtungen und Kommentare:

- 1. Die mittleren Schwingungsamplituden der axialen Xe-F-Bindung liegen auch beim Xe0F $_5$ deutlich höher als diejenigen der entsprechenden äquatorialen Bindungen. Dies bedeutet, daß die axiale Bindung schwächer und dementsprechend auch länger als die vier äquatorialen ist.
- 2. Der Unterschied zwischen den Amplitudenwerten der beiden Xe—F-Bindungen ist im vorliegenden Fall größer als bei allen anderen bisher untersuchten ZXF_5 -Spezies⁶. Dies ist wahrscheinlich auf die Tatsache zurückzuführen, daß das freie Elektronenpaar des Ions eine der oktaedrischen Flächen in der nahen Umgebung des axialen Fluoratoms besetzt⁷, wodurch dieses einer zusätzlichen Abstoßung ausgesetzt wird.

- 3. Die Amplitudenwerte der Xe—O-Bindung liegen in einem ganz ähnlichen Bereich wie bei XeO₂F₂, XeOF₄ und XeO₄ und geringfügig niedriger als beim XeO₃¹². Dies beweist erneut, daß die mittleren Schwingungsamplituden dieser Bindung sehr charakteristisch sind.
- 4. Auch die mittleren Schwingungsamplituden der Xe—F-Bindungen liegen im Erwartungsbereich, fallen aber stets etwas höher aus als entsprechende Werte für die bisher berechneten Xenon-Fluoride und Oxofluoride (vgl. z. B. 12). Dieses Verhalten beweist, daß im vorliegenden Falle die Xe—F-Bindungen, im Vergleich zu verwandten Verbindungen, etwas geschwächt sind.
- 5. Die Amplitudenwerte der nicht gebundenen $F_{eq}F_{ax}$ und $F_{eq}O$ -Paare besitzen im gesamten Temperaturbereich praktisch gleiche Werte, während das $F_{eq}F_{eq}$ -Paar etwas verschiedene, höhere Zahlen aufweist. Beim verwandten IOF_5 dagegen liegen diese Werte in der Reihenfolge $F_{aq}F_{ax} > F_{eq}F_{eq} > F_{eq}O$. Auch dieser Effekt ist sicherlich mit der gesamten Schwächung und Störung des XF_5 -Gerüstes beim Übergang vom IOF_5 zum $XeOF_5$ verbunden.

Zusammenfassend läßt sich also sagen, daß $XeOF_5^-$ ganz ähnliche Struktureigenschaften wie andere bereits untersuchte ZXF_5 -Spezies aufweist. Obwohl die tatsächliche Struktur sicherlich starke Abweichungen von der C_{4v} -Symmetrie zeigt, was bereits durch die Raman-Messungen bewiesen ist 7 , zeigen die vorliegenden Ergebnisse ganz deutlich, daß auch in diesen Fall die axiale Xe—F-Bindung schwächer als die äquatorialen ist. Die Schwächung der Bindungen im gesamten XeF_5 -Gerüst ist sieherlich durch die negative Ladung des Ions sowie durch die Symmetrie-Erniedrigung und der Anwesenheit des freien Elektronenpaares bedingt. Letzteres trägt sicherlich in großem Maß besonders zur Schwächung der axialen Xe—F-Bindung bei.

Alle Berechnungen wurden an einem IBM 4331 Computer (CESPI-UNLP) durchgeführt.

Diese Arbeit wurde mit Unterstützung des "Consejo Nacional de Investigaciones Científicas y Técnicas" durchgeführt.

Literatur

- ¹ Bartell L. S., Clippard B., Jacob E. J., Inorg. Chem. 15, 3009 (1976).
- ² Marsden C. J., Bartell L. S., Inorg. Chem. 15, 3004 (1976).
- ³ Gillespie R. J., Nyholm R. S., Quart. Rev. 11, 339 (1957).
- ⁴ Gillespie R. J., Molecular Geometry. London: van Nostrand. 1973.
- ⁵ Baran E. J., Monatsh. Chem. **110**, 1267 (1979).
- ⁶ Baran E. J., Indian J. Pure Appl. Phys. 17, 622 (1979).
- ⁷ Schrobilgen G. J., Martin-Rovet D., Charpin P., Lance M., J. Chem. Soc. Chem. Comm. 1980, 894.
 - 47 Monatshefte für Chemie, Vol. 113/6 -- 7

- 8 Müller A., Peacock C. J., Schulze H., Heidborn U., J. Mol. Struct. 3, 252 (1969).
- ⁹ Müller A., Baran E. J., Schmidt K. H., Characteristic Mean Amplitudes of Vibration, in: Molecular Structures and Vibrations (Cyvin S. J., Hrsg.). Amsterdam: Elsevier. 1972.
- ¹⁰ Baran E. J., An. Asoc. Quím. Argent. **61**, 141 (1973).
- ¹¹ Bailar J. C., Emeléus H. J., Nyholm R., Trotman-Dickenson A. F. (Hrsg.). Comprehensive Inorganic Chemistry, Bd. I. Oxford: Pergamon Press. 1973.
- ¹² Baran E. J., Indian J. Pure Appl. Phys. **15**, 450 (1977).